BibManager: Overview

Jump to: navigation, search
Welcome to the overview page of the BibManager-Extension!
Depending on your authorization you can search for existing entries, edit, delete or export an entry as BibTeX-String. Please use the SpecialPages <a href="/nano/Special:BibManagerCreate" title="Special:BibManagerCreate">Add new entry</a> and <a href="/nano/Special:BibManagerImport" title="Special:BibManagerImport">Import BibTeX</a> if you'd like to add a new entry or import a BibTeX-String.
(first | last) View (previous 50 | ) (20 | 50 | 100 | 250 | 500)
Citationkey Citation Export
[Adam2008] Ádám Gali, Péter Deák, Bálint Aradi, Riccardo Rurali: -, Deutche Physikgemeinschaft (DPG) Spring Meeting (2008). Hybrid functional and GW calculations on defects in semiconductors: from quantitative to qualitative changes of defect levels and states compared to standard DFT methods
[Aharonovich2014optical] I. Aharonovich, M. Toth: Nature Physics, 10, 93-94 (2014). Optical materials: Silicon carbide goes quantum
[Bardeleben2012] H. J. von Bardeleben, J. L. Cantin, U. Gerstmann, A. Scholle, S. Greulich-Weber, E. Rauls, M. Landmann, W. G. Schmidt, A. Gentils, J. Botsoa, M. F. Barthe: Phys. Rev. Lett., 109, 206402 (2012). Identification of the Nitrogen Split Interstitial in GaN
[Becher2014fluorescent] C. Becher: Nature nanotechnology, 9, 16-17 (2014). Fluorescent nanoparticles: Diamonds from outer space
[Beke2011] D. Beke, Z. Szekrényes, I. Balogh, M. Veres, É. Fazakas, L. K. Varga, K. Kamarás, Z. Czigány, A. Gali: Applied Physics Letters, 99, 213108 (2011). Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching
[Beke2013_bio] D. Beke, Z. Szekrényes, D. Pálfi, G. Róna, I. Balogh, P. A. Maák, G. Katona, Z. Czigány, K. Kamarás, B. Rózsa, L. Buday, B. Vértessy, A. Gali: Journal of Materials Research, 28, 205-209 (2013). Silicon carbide quantum dots for bioimaging
[bodrog2014spin] Z. Bodrog, A. Gali: Journal of Physics: Condensed Matter, 26, 015305 (2014). The spin–spin zero-field splitting tensor in the projector-augmented-wave method
[Boretti2014optical] A. Boretti: Nature Photonics, 8, 88-90 (2014). Optical materials: Silicon carbide's quantum aspects
[Bradac2010] C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, J. Rabeau: Nature Nanotechnology, 5, 345-349 (2010). Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds
[C2NR32442C] B. Somogyi, V. Zolyomi, A. Gali: Nanoscale, 4, 7720-7726 (2012). Near-infrared luminescent cubic silicon carbide nanocrystals for in vivo biomarker applications: an ab initio study
[C4TA01543F] M. Voros, S. Wippermann, B. Somogyi, A. Gali, D. Rocca, G. Galli, G. T. Zimanyi: J. Mater. Chem. A, 2, 9820-9827 (2014). Germanium nanoparticles with non-diamond core structures for solar energy conversion
[castelletto2014room] S. Castelletto, B. C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, A. Gali: ACS Nano, 8, 7938-7947 (2014). Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles
[Castelletto2014silicon] S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima: Nature materials, 13, 151-156 (2014). A silicon carbide room-temperature single-photon source
[Chang2005] H. Chang, J. Wu, B. Gu, F. Liu, W. Duan: Physical Review Letters, 95, - (2005). Physical Origin of Hydrogen-Adsorption-Induced Metallization of the SiC Surface: n-Type Doping via Formation of Hydrogen Bridge Bond
[Clark1995] C. D. Clark, H. Kanda, I. Kiflawi, G. Sittas: Phys. Rev. B, 51, 16681-16688 (1995). Silicon defects in diamond
[Deak2005] D. Péter, G. Ádám, S. András, B. Ádám, F. Thomas: Journal of Physics: Condensed Matter, 17, 2141-2153 (2005). Electronic structure of boron-interstitial clusters in silicon
[Deak2007] P. Deák, T. Frauenheim, Á. Gali: Physical Review B, 75, - (2007). Limits of the scaled shift correction to levels of interstitial defects in semiconductors
[Deak2008] D. Péter, A. Bálint, F. Thomas, G. Ádám: Materials Science and Engineering: B, 154-155, 187-192 (2008). Challenges for ab initio defect modeling
[Deak2014] P. Deák, B. Aradi, M. Kaviani, T. Frauenheim, A. Gali: Phys. Rev. B, 89, 075203 (2014). Formation of NV centers in diamond: A theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects
[demjan2014electronic] T. Demján, M. Vörös, M. Palummo, A. Gali: The Journal of Chemical Physics, 141, 064308 (2014). Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory
[doi:10.1021/nl300816t] B. Yan, R. Rurali, Á. Gali: Nano Letters, 12, 3460-3465 (2012). Ab Initio Study of Phosphorus Donors Acting as Quantum Bits in Silicon Nanowires
[doi:10.1021/nl901970u] A. Gali, M. Vörös, D. Rocca, G. T. Zimanyi, G. Galli: Nano Letters, 9, 3780-3785 (2009). High-Energy Excitations in Silicon Nanoparticles
[Edmonds2008] A. M. Edmonds, M. E. Newton, P. M. Martineau, D. J. Twitchen, S. D. Williams: Phys. Rev. B, 77, 245205 (2008). Electron paramagnetic resonance studies of silicon-related defects in diamond
[Gali10] A. Gali, A. Gällström, N. Son, E. Janzén: Mater. Sci. Forum, 645-648, 395-397 (2010). Theory of Neutral Divacancy in SiC: A Defect for Spintronics
[Gali2000] A. Gali, B. Aradi, P. Deák, W. Choyke, N. Son: Physical Review Letters, 84, 4926-4929 (2000). Overcoordinated Hydrogens in the Carbon Vacancy: Donor Centers of SiC
[Gali2009] Á. Gali, J. Erik, P. Deák, K. Georg, K. Efthimios: Physical Review Letters, 103, 186404 (2009). Theory of Spin-Conserving Excitation of the N-V- Center in Diamond
[Gali2011-TDDFT] A. Gali: physica status solidi (b), 248, 1337-1346 (2011). Time-dependent density functional study on the excitation spectrum of point defects in semiconductors
[Gali2012-MSF] A. Gali: Mater. Sci. Forum, 717-720, 255-258 (2012). Excitation Properties of Silicon Vacancy in Silicon Carbide
[Gali2012-TDDFT] A. Gali: J. Mater. Res., 27, 897-909 (2012). Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory
[gali2013ab] A. Gali, J. R. Maze: Physical Review B, 88, 235205 (2013). Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties
[Goss2007] J. P. Goss, P. R. Briddon, M. J. Shaw: Phys. Rev. B, 76, 075204 (2007). Density functional simulations of silicon-containing point defects in diamond
[Haenens2011] U. F. S. D'Haenens-Johansson, A. M. Edmonds, B. L. Green, M. E. Newton, G. Davies, P. M. Martineau, R. U. A. Khan, D. J. Twitchen: Phys. Rev. B, 84, 245208 (2011). Optical properties of the neutral silicon split-vacancy center in diamond
[Koehl2011] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, D. D. Awschalom: Nature, 479, 84-87 (2011). Room temperature coherent control of defect spin qubits in silicon carbide
[Kotani] T. Kotani, M. van Schilfgaarde: Phys. Rev. B, 81, 125201 (2010). Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the approximation
[malone2014first] B. D. Malone, A. Gali, E. Kaxiras: Phys. Chem. Chem. Phys., 16, 26176-26183 (2014). First principles study of point defects in SnS
[MazeGali2011] J R Maze, A Gali, E Togan, Y Chu, A Trifonov, E Kaxiras, M D Lukin: New Journal of Physics, 13, 025025 (2011). Properties of nitrogen-vacancy centers in diamond: the group theoretic approach
[Moloud2014] M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J. Chou, A. Gali: Nano Letters, 14, 4772-4777 (2014). Proper Surface Termination for Luminescent Near-Surface NV centers in Diamomnd
[Neu2012] E. Neu, R. Albrecht, M. Fischer, S. Gsell, M. Schreck, C. Becher: Phys. Rev. B, 85, 245207 (2012). Electronic transitions of single silicon vacancy centers in the near-infrared spectral region
[Okai2012] B. Ofori-Okai, S. Pezzagna, K. Chang, M. Loretz, R. Schirhagl, Y. Tao, B. Moores, K. Groot-Berning, J. Meijer, C. Degen: Physical Review B, 86, 081406 (2012). Spin properties of very shallow nitrogen vacancy defects in diamond
[PhysRevB.77.155206] A. Gali, M. Fyta, E. Kaxiras: Phys. Rev. B, 77, 155206 (2008). textitAb initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors
[PhysRevB.79.235210] A. Gali: Phys. Rev. B, 79, 235210 (2009). Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit
[PhysRevB.80.161411] M. Vörös, A. Gali: Phys. Rev. B, 80, 161411 (2009). Optical absorption of diamond nanocrystals from ab initio density-functional calculations
[PhysRevB.80.241204] A. Gali: Phys. Rev. B, 80, 241204 (2009). Identification of individual isotopes of nitrogen-vacancy center in diamond by combining the polarization studies of nuclear spins and first-principles calculations
[PhysRevB.81.041204] Y. Ma, M. Rohlfing, A. Gali: Phys. Rev. B, 81, 041204 (2010). Excited states of the negatively charged nitrogen-vacancy color center in diamond
[PhysRevB.87.155402] M. Vörös, D. Rocca, G. Galli, G. T. Zimanyi, A. Gali: Phys. Rev. B, 87, 155402 (2013). Increasing impact ionization rates in Si nanoparticles through surface engineering: A density functional study
[PhysRevB.87.205201] V. Ivády, I. A. Abrikosov, E. Janzén, A. Gali: Phys. Rev. B, 87, 205201 (2013). Role of screening in the density functional applied to transition-metal defects in semiconductors
[PhysRevB.88.075202] K. Szász, T. Hornos, M. Marsman, A. Gali: Phys. Rev. B, 88, 075202 (2013). Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: The role of core spin polarization
[PhysRevB.90.035146] V. Ivády, R. Armiento, K. Szász, E. Janzén, A. Gali, I. A. Abrikosov: Phys. Rev. B, 90, 035146 (2014). Theoretical unification of hybrid-DFT and methods for the treatment of localized orbitals
[PhysRevB.90.165142] J. E. Coulter, E. Manousakis, A. Gali: Phys. Rev. B, 90, 165142 (2014). Optoelectronic excitations and photovoltaic effect in strongly correlated materials
[PhysRevB.90.235205] V. Ivády, T. Simon, J. R. Maze, I. A. Abrikosov, A. Gali: Phys. Rev. B, 90, 235205 (2014). Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study
(first | last) View (previous 50 | ) (20 | 50 | 100 | 250 | 500)